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Abstract 

Objective The aim of this study was to develop a hybrid diagnostic framework integrating radiomic and deep fea-
tures for accurate and reproducible detection and classification of wrist fractures using X-ray images.

Materials and Methods A total of 3,537 X-ray images, including 1,871 fracture and 1,666 non-fracture cases, were 
collected from three healthcare centers. Radiomic features were extracted using the PyRadiomics library, and deep 
features were derived from the bottleneck layer of an autoencoder. Both feature modalities underwent reliability 
assessment via Intraclass Correlation Coefficient (ICC) and cosine similarity. Feature selection methods, includ-
ing ANOVA, Mutual Information (MI), Principal Component Analysis (PCA), and Recursive Feature Elimination (RFE), 
were applied to optimize the feature set. Classifiers such as XGBoost, CatBoost, Random Forest, and a Voting Classifier 
were used to evaluate diagnostic performance. The dataset was divided into training (70%) and testing (30%) sets, 
and metrics such as accuracy, sensitivity, and AUC-ROC were used for evaluation.

Results The combined radiomic and deep feature approach consistently outperformed standalone methods. The 
Voting Classifier paired with MI achieved the highest performance, with a test accuracy of 95%, sensitivity of 94%, 
and AUC-ROC of 96%. The end-to-end model achieved competitive results with an accuracy of 93% and AUC-ROC 
of 94%. SHAP analysis and t-SNE visualizations confirmed the interpretability and robustness of the selected features.

Conclusions This hybrid framework demonstrates the potential for integrating radiomic and deep features 
to enhance diagnostic performance for wrist and forearm fractures, providing a reliable and interpretable solution 
suitable for clinical applications.
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Introduction
Accurate and reliable diagnosis of wrist fractures is criti-
cal for effective clinical management and optimal patient 
outcomes. X-ray imaging remains the primary diagnostic 
modality in such cases due to its accessibility and cost-
effectiveness [1–5]. However, interpreting X-ray images 
can be challenging due to variations in image quality, 
subtle fracture patterns, and inter-observer variability 
among clinicians. Conventional diagnostic methods and 
standalone artificial intelligence (AI) systems have shown 
promise in fracture detection but often lack the robust-
ness and reproducibility required for widespread clinical 
deployment [6–12]. These limitations highlight the need 
for advanced approaches that integrate complementary 
methodologies to enhance diagnostic performance.

Radiomics is a rapidly evolving field that focuses on 
extracting quantitative features from medical images to 
characterize underlying pathologies, including fractures 
[13, 14]. These features, derived from pixel intensity dis-
tributions, texture patterns, and shape descriptors, offer 
valuable insights that extend beyond traditional visual 
assessment [15–19]. In the context of forearm and wrist 
fractures, radiomics can capture subtle imaging charac-
teristics, providing a robust foundation for automated 
diagnostic systems [20–24]. Despite its promise, stan-
dalone radiomic analysis often faces challenges related 
to variability in feature extraction processes and depend-
ence on image quality, underscoring the need for integra-
tion with advanced computational methods to enhance 
diagnostic reliability and reproducibility.

Deep learning models, particularly those utilizing 
autoencoders, excel in learning complex data representa-
tions directly from imaging data [25–29]. Autoencoders, 
through their encoding and decoding processes, identify 
essential features and remove redundant information, 
making them well-suited for medical image analysis [30–
33]. When enhanced with attention mechanisms, these 
models can prioritize diagnostically significant regions 
within X-ray images, thereby improving the interpret-
ability and relevance of extracted features [34–38]. 
Attention-enhanced autoencoders focus computational 
resources on fracture-prone areas, refining the model’s 
ability to differentiate between subtle and pronounced 
fracture patterns, which is critical for achieving high 
diagnostic accuracy.

The integration of radiomics and deep learning, par-
ticularly through attention-enhanced frameworks, pre-
sents a promising hybrid approach to overcome the 
limitations of each modality individually [15, 19, 39–45]. 
By combining the quantitative precision of radiom-
ics with the robust feature learning capabilities of deep 
models, this hybrid framework enhances the sensitivity 
and specificity of fracture detection systems. Moreover, 

such integration enables a more reproducible and clini-
cally applicable solution by leveraging complementary 
strengths: radiomics ensures the inclusion of interpret-
able, hand-crafted features, while deep learning models 
provide adaptability and improved generalization across 
diverse datasets. Together, these methods create a syner-
gistic effect, resulting in superior diagnostic performance 
and robustness for X-ray imaging of forearm and wrist 
fractures.

Recent advances in artificial intelligence have signifi-
cantly impacted the field of musculoskeletal imaging, 
particularly in the detection and classification of bone 
fractures. Numerous studies have demonstrated the 
promise of deep learning and radiomics-based frame-
works for improving diagnostic accuracy and efficiency. 
Ali et al. [46] employed YOLOv9 and YOLOv8-cls mod-
els on a large wrist radiograph dataset, achieving high 
accuracy and recall, while also leveraging explainable AI 
techniques like EigenCAM to visualize decision-making 
regions, thus improving clinical interpretability. Similarly, 
Rafi et al. [47] developed a comprehensive deep learning 
system combining DenseNet-201, EfficientNetV2, U-Net, 
and other architectures for wrist fracture detection and 
segmentation, with an emphasis on bridging healthcare 
gaps in underserved areas. These studies underscore the 
potential of CNN-based models but often lack a unified 
framework that integrates interpretable features and 
ensures reproducibility.

Wei et al. [48] introduced a YOLOv11-based multi-task 
learning model for real-time fracture detection and local-
ization, outperforming Faster R-CNN and SSD in both 
mean Average Precision and Intersection over Union, 
highlighting the strength of multi-objective networks in 
clinical applications. Complementarily, Tieu et  al. [49] 
reviewed the role of AI in fracture diagnosis across vari-
ous anatomical sites, including commercially available 
systems and their clinical integration, underscoring AI’s 
emerging clinical viability.

Beyond deep learning, other studies have focused on 
handcrafted feature extraction. For instance, KS et  al. 
[50] used wavelet decomposition and texture descriptors 
(LBP, Gabor, fractal dimension) to classify osteoporo-
tic bone structures via machine learning, emphasizing 
the value of microstructural texture analysis in radio-
graphic assessment. Despite these advances, few frame-
works holistically combine radiomic and deep features 
while rigorously assessing their reproducibility. Our 
study addresses this gap by integrating attention-guided 
autoencoder-derived features with quantitative radiom-
ics, filtered through reliability assessments (ICC and 
cosine similarity), and validated across a multi-institu-
tional dataset using ensemble classification strategies. 
This hybrid approach enhances diagnostic performance, 
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reproducibility, and clinical interpretability, positioning it 
as a robust candidate for real-world deployment [51].

This study proposes a novel diagnostic framework that 
combines radiomic features with attention-enhanced 
deep learning approaches for detecting and classifying 
wrist fractures from X-ray images. The hybrid framework 
leverages the PyRadiomics library to extract radiomic 
features and utilizes an attention-guided autoencoder to 
refine deep feature representations. Rigorous reliability 
assessments, including Intraclass Correlation Coefficient 
(ICC) and cosine similarity analyses, were employed to 
evaluate the reproducibility of the extracted features. 
This integration aims to overcome the limitations of tra-
ditional and standalone AI methods by improving diag-
nostic accuracy, sensitivity, and robustness.

The primary contributions of this work are as follows:

1. Development of a hybrid diagnostic framework that 
integrates radiomic and deep features extracted from 
X-ray images for accurate wrist fracture detection.

2. Implementation of attention-enhanced autoencoder 
architecture to improve feature relevance and model 
interpretability by focusing on diagnostically signifi-
cant image regions.

3. Validation of the framework’s robustness and gener-
alizability through reproducibility analysis (ICC and 
cosine similarity) and performance evaluation across 
multi-institutional datasets.

By advancing the integration of radiomics and deep 
learning with attention mechanisms, this study lays the 
groundwork for reproducible and robust diagnostic solu-
tions in X-ray imaging of musculoskeletal injuries.

Materials and Methods
Data collection and sources
The X-ray image dataset used in this study was collected 
from three healthcare institutions: Centers A, B, and C. 
The dataset comprises cases of wrist fractures and non-
fractures, providing a detailed breakdown for each center. 
While the original dataset included both forearm and 
wrist cases, for the purpose of this study, all cases have 
been considered as wrist data to streamline the analysis. 
This multi-center dataset includes a total of 1,871 wrist 
fracture cases and 1,666 wrist non-fracture cases, ensur-
ing a diverse representation of patient demographics and 
imaging protocols. Table  1 presents the distribution of 
cases, categorized as wrist fractures and non-fractures, 
across the three centers. This systematic collection 
ensures robustness and reliability in subsequent analysis 
and model training. Figure 1 illustrates the study design 
for the machine and deep learning framework developed 
in our study. In this study, each X-ray image corresponds 

to a unique patient, with no duplication or multiple 
images from the same individual. This ensures data inde-
pendence and reduces the risk of intra-patient correla-
tion influencing the model’s performance.

Inclusion and Exclusion Criteria
Inclusion criteria for the dataset required high-quality 
X-ray images with confirmed clinical diagnoses of fore-
arm or wrist fractures, as well as non-fracture cases 
with no pathological findings. Cases with ambiguous or 
unclear fracture labels, low-resolution images, or miss-
ing clinical metadata were excluded. Images were also 
excluded if they exhibited severe artifacts that could 
hinder feature extraction or model training. A total of 
412 X-ray images were excluded from the initial data-
set based on predefined quality and diagnostic criteria. 
These exclusions were distributed as follows: Center A 
(n = 147), Center B (n = 133), and Center C (n = 132). The 
primary reasons for exclusion included low-resolution 
images (n = 173), missing clinical annotations or meta-
data (n = 126), and images with severe artifacts such as 
motion blur or underexposure (n = 113). This refinement 
ensured that only high-quality, diagnostically relevant 
images were used in model development and evaluation, 
thereby supporting the framework’s reliability and real-
world applicability across varied imaging environments.

Preprocessing of X‑ray images
To ensure consistency in feature extraction and model 
training, all X-ray images underwent a comprehensive 
preprocessing pipeline. First, images were resized to a 
uniform resolution of 256 × 256 pixels to standardize 
input dimensions across the dataset, facilitating compat-
ibility with deep learning architectures. Pixel intensity 
values were normalized to a range of [0, 1] to reduce vari-
ability stemming from differing image acquisition pro-
tocols and improve model convergence during training. 
To maintain a consistent aspect ratio, images were either 
cropped or padded, focusing on centering the regions of 
interest, such as the forearm or wrist. Noise reduction 
techniques, including Gaussian filtering, were applied to 
suppress high-frequency noise while preserving essential 

Table 1 Distribution of X-ray Cases Across Centers

Center Wrist Fracture Wrist Non-
Fracture

Total Cases

A 630 570 1,200

B 620 530 1,150

C 621 566 1,187

Total 1,871 1,666 3,537
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structural details. Additionally, histogram equalization 
was performed to enhance contrast and improve the vis-
ibility of subtle fracture lines, particularly in underex-
posed or low-contrast images.

Radiomic Feature Extraction
Overview of PyRadiomics framework
Radiomic features were extracted using the PyRadiom-
ics library, a widely used tool for deriving quantitative 
imaging biomarkers from medical images. The frame-
work provided a standardized and reproducible pipeline 
for analyzing X-ray images, enabling the extraction of 
features essential for forearm and wrist fracture analy-
sis. The region of interest (ROI) for feature extraction 
was manually delineated by experienced radiologists to 
ensure accuracy.

Selection of Radiomic Features
The extracted radiomic features were organized into 
multiple categories to comprehensively capture imaging 
attributes relevant to fracture detection. First-order sta-
tistics, comprising 19 features, described the pixel inten-
sity distribution within the ROI, including metrics such 
as mean, variance, skewness, and entropy. Shape-based 
features, consisting of 10 metrics, quantified the geo-
metric properties of the fracture regions, including area, 
perimeter, and elongation.

Texture features provided insights into the spatial 
arrangement of pixel intensities and were divided into 
several subcategories. The Gray-Level Co-Occurrence 

Matrix (GLCM) included 24 features to analyze the fre-
quency of pixel intensity combinations and assess image 
heterogeneity. The Gray-Level Run Length Matrix 
(GLRLM), with 16 features, captured texture uniformity 
and patterns of linearity within the ROI. The Gray-Level 
Size Zone Matrix (GLSZM), also comprising 16 features, 
evaluated size distribution and intensity consistency of 
homogenous zones.

Additional subcategories included the Neighboring 
Gray-Tone Difference Matrix (NGTDM), with 5 features 
to quantify local contrast and smoothness, and the Gray-
Level Dependence Matrix (GLDM), consisting of 14 fea-
tures, to measure intensity dependence patterns. This 
diverse array of features ensured a comprehensive anal-
ysis of fracture-related characteristics in X-ray images, 
enhancing the ability of the model to distinguish between 
fracture and non-fracture cases.

Deep Learning Framework
Architecture of the Autoencoder
The autoencoder employed in this study consisted of 
three main components: an encoder, a bottleneck, and 
a decoder. The encoder extracted hierarchical feature 
representations from the input X-ray images, the bot-
tleneck compressed these features into a latent space 
for efficient representation, and the decoder recon-
structed the input while preserving diagnostically rel-
evant features. Importantly, the deep features used 
for further analysis were extracted from the bottle-
neck layer, which provided a compact yet informative 

Fig. 1 Study Design and Training Pipeline for the Predictive Model Integrating Radiomic and Deep Features
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representation of the input images. The architecture is 
summarized in Table 2, detailing the layers, filter sizes, 
activation functions, and the number of parameters at 
each stage.

Attention Mechanisms in the Autoencoder
The autoencoder was enhanced with attention mecha-
nisms to emphasize diagnostically relevant regions of 
the X-ray images. A channel-wise attention module 
was integrated within the encoder to prioritize impor-
tant feature maps by recalibrating channel weights. 
Additionally, a spatial attention mechanism was incor-
porated into the decoder to focus on fracture-prone 
regions, aiding in more accurate reconstructions and 
feature representations. These mechanisms improved 
model performance by suppressing irrelevant regions 
and amplifying critical features.

Training and Validation of Deep Learning Models
The autoencoder was trained on the preprocessed 
X-ray dataset using a combination of binary cross-
entropy and mean squared error as the loss function. 
The Adam optimizer was employed with an initial 
learning rate of 0.001 and a batch size of 32. The model 
was trained for 1000 epochs, with early stopping crite-
ria to prevent overfitting. Data augmentation, includ-
ing rotation, flipping, and zooming, was applied to 
improve generalization. Validation was performed on a 
hold-out set, and performance metrics, such as recon-
struction loss and feature extraction accuracy, were 
monitored throughout the training process.

Reliability Assessment of Radiomic Features and Deep 
Features
To ensure the reproducibility and robustness of the radi-
omic features, reliability assessments were performed. 
The Intraclass Correlation Coefficient (ICC) was used 
to evaluate the consistency of feature extraction across 
repeated measurements, with features achieving an ICC 
value of ≥ 0.75 considered reliable. An ICC threshold of 
≥ 0.75 was adopted to define feature reliability, aligning 
with commonly accepted benchmarks in the literature, 
where such values denote good to excellent reproduc-
ibility. This threshold ensures that only features demon-
strating stable and consistent behavior across repeated 
measurements are incorporated into the model, thereby 
enhancing the robustness and clinical applicability of 
the diagnostic framework. These rigorous evaluations 
ensured that only stable and reproducible radiomic fea-
tures were used in subsequent analyses. The ICC calcula-
tion is defined as:

where:
σ2B: Variance between subjects.
σ2e: Variance within subjects (measurement error or 

noise).
MSB: Mean square for between-subject variability.
MSW: Mean square for within-subject variability.
K: Number of raters or repeated measurements.
The stability of the deep features extracted from the 

bottleneck layer of the autoencoder was evaluated 
through repeated experiments conducted under varying 
conditions. These conditions included different random 
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Table 2 Architecture of the Autoencoder

Component Layer Type Filter Size/Units Number of 
Filters

Activation Function Number of 
Parameters

Encoder Conv2D 3 × 3 64 ReLU 640

MaxPooling2D 2 × 2 - - 0

Conv2D 3 × 3 128 ReLU 73,856

MaxPooling2D 2 × 2 - - 0

Conv2D 3 × 3 256 ReLU 295,168

Bottleneck Dense (Fully Connected) 512 - ReLU 131,584

Dropout (Regularization) - - - 0

Decoder Conv2DTranspose 3 × 3 256 ReLU 590,080

UpSampling2D 2 × 2 - - 0

Conv2DTranspose 3 × 3 128 ReLU 295,040

UpSampling2D 2 × 2 - - 0

Conv2DTranspose 3 × 3 64 ReLU 73,792

Output Layer (Conv2D) 3 × 3 1 Sigmoid 577
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initializations, training-validation splits, and hyperpa-
rameter configurations. To assess the consistency of 
the extracted features, cosine similarity was calculated 
between feature vectors derived from identical input 
images across multiple experiments.

Cosine similarity is expressed as:

where F1 and F2 represent the feature vectors obtained 
in two separate experiments. A cosine similarity score 
exceeding 0.90 was considered indicative of stable feature 
extraction across different experimental settings. By inte-
grating reproducible radiomic features with stable deep 
features, the study constructed a hybrid feature set that 
leveraged both interpretable imaging biomarkers and 
abstract, high-dimensional representations. This rigorous 
approach ensured that only reliable and diagnostically 
relevant features were used in the classification model, 
thereby improving its robustness, diagnostic accuracy, 
and generalizability.

Hybrid Framework Integration
Fusion of Radiomic and Deep Features
The integration of radiomic and deep features was con-
ducted using a feature-level fusion strategy. First, radi-
omic features were extracted from manually delineated 
regions of interest (ROIs) using the PyRadiomics library, 
resulting in a comprehensive set of hand-crafted fea-
tures that capture shape, texture, and intensity charac-
teristics. Concurrently, deep features were obtained from 
the bottleneck layer of an attention-enhanced autoen-
coder trained on the same preprocessed X-ray images. 
These deep features represented abstract, high-dimen-
sional embeddings encapsulating spatial and contextual 
information critical for fracture discrimination. Prior 
to fusion, both feature sets underwent standardization 
using Z-score normalization to ensure comparability in 
scale and variance. Subsequently, the standardized radi-
omic and deep features were concatenated into a single 
unified feature vector for each case. This concatenation 
strategy preserved the individual contributions of each 
modality while enabling joint analysis.

To address potential redundancy and the curse of 
dimensionality introduced by the combined feature set, 
we applied feature selection techniques (e.g., Mutual 
Information, ANOVA) and dimensionality reduc-
tion methods (e.g., PCA, RFE) post-fusion. These steps 
ensured that the most diagnostically informative fea-
tures—whether radiomic or deep—were retained for 
input into the classification models. By fusing these com-
plementary modalities, the hybrid framework capitalized 
on the interpretability and domain specificity of radiomic 

Cosine Similarity =
F1 · F2

|F1||F2|

features along with the robust representational power 
of deep features. This integrative approach significantly 
enhanced model accuracy, sensitivity, and generalizabil-
ity in the detection and classification of wrist fractures.

Feature Selection and Dimensionality Reduction
Dimensionality reduction was a critical step in the hybrid 
framework to address challenges arising from the high-
dimensional feature space generated by concatenat-
ing radiomic and deep features. The unified feature set, 
while rich in diagnostic information, introduced risks of 
redundancy, noise, and multicollinearity, which could 
compromise model performance and lead to overfitting. 
To handle the high dimensionality of the concatenated 
feature vector and improve model performance, a two-
step feature optimization process was implemented. 
First, ANOVA F-test and mutual information analysis 
were applied to rank the features based on their diagnos-
tic relevance. Following this, to counteract these issues, 
we applied dimensionality reduction techniques such as 
PCA and RFE. PCA transformed the original features 
into a smaller set of uncorrelated components that cap-
tured the majority of the data’s variance, while RFE recur-
sively removed less informative features based on model 
performance. These methods ensured that only the most 
relevant and non-redundant features were retained for 
classification. By reducing the feature dimensionality, we 
improved computational efficiency, enhanced model gen-
eralization to unseen data, and simplified downstream 
interpretability analyses, such as SHAP. This step was 
essential to maximize the diagnostic utility of the hybrid 
feature space and to build a more robust and clinically 
deployable classification framework.

Workflow of the Hybrid Diagnostic Framework
The hybrid diagnostic framework followed a system-
atic workflow to ensure effective fracture detection 
and classification. Initially, X-ray images underwent 
preprocessing, including resizing, normalization, and 
manual delineation of regions of interest to prepare the 
data for radiomic feature extraction. Radiomic features 
were extracted using the PyRadiomics library, providing 
interpretable imaging biomarkers, while deep features 
were obtained from the bottleneck layer of an attention-
enhanced autoencoder, capturing high-dimensional rep-
resentations of the images. These two feature modalities 
were fused into a hybrid feature vector, combining com-
plementary strengths for enhanced diagnostic accuracy.

To ensure the reliability of the extracted features, ICC 
analysis was first conducted to assess the reproducibil-
ity of both radiomic and deep features. Features with 
ICC values above a predefined threshold (ICC ≥ 0.75) 
were considered reliable and retained for further 
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analysis. Subsequently, feature selection techniques, 
including ANOVA F-test and mutual information (MI) 
analysis, were employed to rank the retained features 
based on their diagnostic relevance. Dimensionality 
reduction methods, such as PCA and RFE, were then 
applied to reduce redundancy and focus on the most 
significant features.

The optimized feature set was input into machine 
learning classifiers, including XGBoost, CatBoost, Ran-
dom Forest, and an ensemble Voting Classifier, to per-
form fracture detection and classification. The models 
were rigorously evaluated using metrics such as accu-
racy, sensitivity, and area under the receiver operating 
characteristic (ROC) curve (AUC). Additionally, SHAP 
(SHapley Additive exPlanations) values and t-SNE were 
employed to interpret the contribution of individual 
features to the model’s predictions. SHAP provided 
insights into the relative importance of radiomic and 
deep features in classification decisions, enhancing the 
transparency and interpretability of the hybrid diagnos-
tic framework. This allowed for a better understanding 
of how specific features influenced the detection and 
classification of forearm and wrist fractures.

By integrating radiomic and deep features, along 
with robust feature reproducibility, optimization, 
and classification strategies, the hybrid framework 
addressed critical limitations of standalone approaches. 
It achieved superior diagnostic accuracy, improved 
robustness, and maintained interpretability, providing a 
reliable and reproducible solution for the detection and 
classification of forearm and wrist fractures.

Implementation Details
Computational Environment and Tools
The dataset, comprising a total of 3,537 cases across wrist 
fractures and non-fractures. This resulted in 2,830 cases 
for training and 707 cases for testing. The implementa-
tion of the hybrid diagnostic framework was carried out 
using Python (version 3.8). The deep learning compo-
nents, including the attention-enhanced autoencoder, 
were implemented using TensorFlow (version 2.6) and 
Keras libraries. Radiomic features were extracted using 
the PyRadiomics library (version 3.0). Additional tools 
for data preprocessing and analysis included NumPy, 
Pandas, and Scikit-learn. Visualization of results was per-
formed using Matplotlib and Seaborn. The experiments 
were conducted on a workstation equipped with an 
NVIDIA Tesla V100 GPU (32 GB VRAM), 256 GB RAM, 
and an Intel Xeon processor running Ubuntu 20.04.

Hyperparameter Tuning
Hyperparameter tuning was performed to optimize the 
performance of both the autoencoder and the machine 
learning classifiers. For the autoencoder, hyperparam-
eters such as the number of filters in convolutional lay-
ers, dropout rate, learning rate, and batch size were tuned 
using a grid search method combined with cross-valida-
tion. To ensure optimal model performance and general-
izability, extensive hyperparameter tuning was conducted 
across both the deep learning and machine learning 
components of the diagnostic framework. Table  3 pro-
vides a comparative summary of the key hyperparam-
eters tuned for each model, along with their final values 
or tested ranges. This structured presentation facilitates 

Table 3 Summary of Tuned Hyperparameters for Deep Learning and Machine Learning Models

Model Hyperparameters Tuned Final Values/Range

Autoencoder Learning rate 0.001

Dropout rate (bottleneck layer) 0.3

Batch size 32

Optimizer Adam

Epochs 1000 (with early stopping)

XGBoost Number of estimators 100–500

Learning rate 0.01–0.1

Max depth 3–10

CatBoost Number of iterations 100–300

Learning rate 0.01–0.1

Max depth 6–10

Random Forest Number of trees 100–500

Max depth 5–20

Min samples split 2–10

Voting Classifier Weight combination of individual classifiers Tuned for optimal ensem-
ble performance
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reproducibility and enhances the clarity of the model 
development process.

Results
Feature Reliability Analysis
To ensure model stability despite the variability in deep 
feature reproducibility, we implemented a strict feature 
filtering criterion based on the ICC. Only the subset of 
deep features exhibiting ICC values greater than 0.75 
(30.5%) was retained for downstream analysis. This step 
was essential to minimize the influence of non-repro-
ducible features and enhance model robustness. Fur-
thermore, by combining these stable deep features with 
reliable radiomic features, we achieved consistent clas-
sification performance across various machine learning 
algorithms. The reproducibility-focused feature selec-
tion process was integral to maintaining high diagnostic 
accuracy and ensuring the generalizability of the hybrid 
framework across different datasets and experimental 
conditions.

The reproducibility of extracted features was assessed 
using both ICC and cosine similarity. ICC was employed 
to evaluate the consistency of radiomic and deep features 
across repeated measurements, while cosine similarity 
was specifically applied to assess the stability of deep fea-
tures under varying initialization and training conditions. 
Results from both methods were aligned, with features 
demonstrating high ICC values also exhibiting strong 
cosine similarity (typically > 0.90), confirming their 
stability. This agreement between evaluation metrics 
ensured the selection of robust and reproducible features 
for subsequent classification tasks.

The reliability of radiomic features was assessed using 
the ICC to determine the reproducibility of features 
across repeated measurements. The analysis included 104 
radiomic features, categorized into seven feature groups: 
First-Order Statistics (FOS), Shape-based, GLCM, 
GLRLM, GLSZM, NGTDM, and GLDM. Table  4 sum-
marizes the distribution of features with good reliability 
(ICC > 0.75) and poor reliability (ICC ≤ 0.75) across these 
categories.

Overall, 55 out of 104 features (52.9%) demonstrated 
good reliability, while 49 features (47.1%) exhibited poor 
reliability. Among the feature categories, the GLSZM 
group had the highest proportion of reliable features, 
with 12 out of 16 features (75%) showing good reliabil-
ity. Similarly, the Shape-based category exhibited strong 
reliability, with 7 out of 10 features (70%) achieving ICC 
> 0.75. On the other hand, GLCM features showed the 
lowest reliability, with only 9 out of 24 features (37.5%) 
achieving good reliability.

The FOS category, which captures intensity-based fea-
tures, also displayed limited reliability, with 8 out of 19 

features (42.1%) classified as reliable. For texture fea-
tures, GLRLM and GLDM had moderate reliability, with 
50% and 57.1% of features showing good reproducibility, 
respectively. The NGTDM category, which focuses on 
local intensity differences, showed a balanced distribu-
tion with 3 out of 5 features (60%) classified as reliable.

This analysis highlights variability in the reproducibility 
of radiomic features across different categories. The high 
reliability of Shape-based and GLSZM features suggests 
their potential suitability for robust diagnostic appli-
cations, while the lower reliability in categories such as 
GLCM and FOS emphasizes the need for careful feature 
selection to ensure consistent performance in down-
stream tasks. By focusing on features with strong reliabil-
ity, the diagnostic framework can enhance its robustness 
and generalizability.

Figure 2 illustrates the distribution of feature reliability 
across the radiomic categories, presenting the total num-
ber of features, as well as the count of those with good 
and poor reliability. Each group of bars corresponds to a 
specific category, with distinct colors representing total 
features, good reliability, and poor reliability. Addition-
ally, scatter points are overlaid to highlight the variation 
and spread within each category, offering a more detailed 
view of the consistency of individual features. This visu-
alization provides an intuitive summary of the dataset, 
emphasizing the categories with high reliability (e.g., 
GLSZM and Shape-based) and those requiring more 
attention during feature selection (e.g., GLCM and FOS). 
The clear depiction of trends and disparities aids in iden-
tifying the most robust feature groups for downstream 
analysis.

In this study, deep features extracted from the atten-
tion-enhanced autoencoder architecture consisted of 
512 features derived from the bottleneck layer, captur-
ing high-level spatial and semantic details from the input 
X-ray images. These features were refined through atten-
tion mechanisms integrated within the network, which 

Table 4 The reliability of radiomic features

Feature Category Features Good Reliability 
(ICC > 0.75)

Poor 
Reliability 
(ICC ≤ 0.75)

FOS 19 8 11

Shape-based 10 7 3

GLCM 24 9 15

GLRLM 16 8 8

GLSZM 16 12 4

NGTDM 5 3 2

GLDM 14 8 6

Total 104 55 49
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emphasized diagnostically relevant regions, and dropout 
layers, which reduced overfitting. The resulting feature 
vector encapsulated both spatial and contextual informa-
tion, making it suitable for downstream analysis such as 
fracture detection and classification.

To evaluate the reproducibility of these deep features, 
an ICC analysis was conducted. The results revealed that 
356 features (69.5%) had ICC values below 0.75, indicat-
ing poor reproducibility, while the remaining 156 features 
(30.5%) demonstrated ICC values above 0.75, reflecting 
high reliability. These findings underscore the importance 
of ICC-based filtering to retain only the reproducible 
features, ensuring that the hybrid diagnostic framework 
is robust and generalizable across various imaging con-
ditions. Figure 3 presents the distribution of ICC values 
for the 512 deep features, highlighting the predominance 
of low-reproducibility features. This visualization under-
scores the critical need to focus on the subset of highly 
reliable features for subsequent diagnostic tasks, demon-
strating the essential role of ICC analysis in deep feature 
selection.

SHAP values were employed to interpret the influ-
ence of individual radiomic and deep features on model 
predictions. Clinically, SHAP analysis facilitated the 

identification of features most strongly associated with 
fracture detection, such as variations in texture (e.g., 
GLSZM-based homogeneity) or intensity-based meas-
ures. By correlating high-impact features with known 
radiographic markers of fractures, such as cortical dis-
continuity or bone fragmentation, the SHAP framework 
provided an interpretable link between model output 
and clinical reasoning, thereby enhancing the diagnostic 
credibility of the framework. Figures 4, 5, and 6 illustrate 
the SHAP analysis of radiomic features selected using 
ANOVA, MI, and RFE methods. The visualizations high-
light the contributions of individual features to the clas-
sification outcomes, showcasing their relative importance 
and impact. By comparing SHAP values across the three 
feature selection techniques, the figures provide insights 
into the diagnostic relevance of the selected radiomic 
features and their influence on model predictions. These 
analyses underscore the importance of robust feature 
selection in improving interpretability and classification 
performance.

The hybrid framework demonstrated consist-
ent diagnostic performance across datasets obtained 
from Centers A, B, and C. While slight variations in 
image acquisition protocols and patient demographics 

Fig. 2 Distribution of Feature Reliability Across Radiomic Categories
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were present, the standardized preprocessing, fea-
ture reliability filtering, and ensemble classification 
ensured uniform model performance. This cross-center 

stability underscores the framework’s generalizability 
and suitability for real-world, multi-institutional clinical 
implementation.

Fig. 3 Distribution of ICC Values for Deep Features Extracted from the Bottleneck Layer

Fig. 4 SHAP Analysis of Radiomic Features Selected Using ANOVA



Page 11 of 22Saadh et al. BMC Musculoskeletal Disorders          (2025) 26:498  

Model Performance Analysis
The performance of the hybrid diagnostic framework 
was systematically evaluated by integrating radiomic and 
deep features into a predictive pipeline. After applying 
ICC analysis to ensure feature reliability, the selected fea-
tures were processed using dimensionality reduction and 
feature selection methods, including ANOVA, MI, PCA, 
and RFE. The optimized feature sets were then input into 
classification models, such as XGBoost, CatBoost, Ran-
dom Forest, and a Voting Classifier. The model’s perfor-
mance was assessed using three key metrics: Accuracy, 
Sensitivity, and AUC-ROC, on training and test datasets 
for three feature scenarios—Radiomics Only, Deep Fea-
tures Only, and Combined (Radiomics + Deep Features).

To evaluate the generalizability of our hybrid frame-
work across different clinical settings, we conducted an 
external validation experiment. Specifically, the model 
was trained on pooled data from two of the participating 
centers and tested on the third as an independent exter-
nal site. This process was repeated three times, rotating 
the test site each time (leave-one-center-out strategy). 
The external test accuracies were 91.2% (Center A held 
out), 92.6% (Center B held out), and 90.8% (Center C held 
out), with corresponding AUC-ROC values of 93.4%, 

94.2%, and 92.7%, respectively. These results demon-
strate the model’s ability to generalize effectively across 
site-specific imaging protocols and patient demograph-
ics. Despite inherent variations in scanner settings and 
population distributions, the hybrid framework main-
tained high performance, underscoring its clinical 
transferability.

Accuracy
The results in Fig.  7 demonstrate that combining radi-
omic and deep features consistently outperformed the 
use of radiomics or deep features alone across all fea-
ture selection and classification methods. For instance, 
the Voting Classifier paired with MI achieved the high-
est test accuracy of 95%, compared to 79% for Radiomics 
Only and 75.5% for Deep Features Only. Similar trends 
were observed with RFE, where the Voting Classifier 
reached 91% accuracy in the Combined approach. These 
results highlight the complementary nature of radiomic 
and deep features, which improved the overall predictive 
power of the framework.

The combination of MI and the Voting Classifier 
yielded superior performance due to the complemen-
tary strengths of both techniques. MI effectively selects 

Fig. 5 SHAP Analysis of Radiomic Features Selected Using MI
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features with strong nonlinear associations to class 
labels, enhancing discriminative power. When these 
features are input into the Voting Classifier—which 
integrates predictions from multiple base classifiers—
diverse decision boundaries and feature interactions are 
leveraged. This ensemble strategy amplifies predictive 
accuracy and robustness, especially when supported by 
highly informative and non-redundant features derived 
through MI.

Sensitivity
As shown in Fig.  8, sensitivity values followed a similar 
trend, with the Combined approach outperforming indi-
vidual modalities. The highest test sensitivity of 93% was 
achieved by the Voting Classifier with MI, compared to 
72.5% for Radiomics Only and 70% for Deep Features 
Only. This indicates the Combined approach’s superior 
ability to identify true positive cases, making it particu-
larly valuable for clinical applications where sensitivity is 
critical. The use of MI and ANOVA for feature selection 
consistently yielded higher sensitivity compared to PCA, 
which resulted in slightly lower test sensitivities across 
classifiers.

AUC‑ROC
Figure  9 presents the AUC-ROC values, showing the 
Combined approach’s superiority in distinguishing 
between fracture and non-fracture cases. The Voting 
Classifier with MI achieved the highest test AUC-ROC of 
95%, compared to 81.5% for Radiomics Only and 77% for 
Deep Features Only. Among the feature selection meth-
ods, MI consistently led to higher AUC-ROC values, 
emphasizing its effectiveness in identifying diagnosti-
cally relevant features. PCA and RFE yielded compara-
ble results, with test AUC-ROC values for the Combined 
approach ranging between 84 m% and 91% across 
classifiers.

End-to-End Model Performance
In addition to the hybrid framework integrating radi-
omic and deep features, the study also evaluated the 
performance of an End-to-End Model. This approach 
utilized a unified network capable of performing both 
feature extraction and classification directly from the 
raw 2D medical images, eliminating the need for sepa-
rate feature extraction and selection stages. By learning 
data representation and classification simultaneously, the 

Fig. 6 SHAP Analysis of Radiomic Features Selected Using RFE
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end-to-end model streamlined the diagnostic workflow 
while maintaining robust predictive capabilities.

The results of the end-to-end model on the test dataset 
demonstrated competitive performance, achieving a final 
accuracy of 0.93, an AUC-ROC of 0.94, and an F1-score 
of 0.92. These metrics highlight the model’s strong ability 
to differentiate between fracture and non-fracture cases 
and maintain a balanced trade-off between sensitivity 
and specificity (Fig.  10). Figure  10 presents the training 
dynamics of the end-to-end deep learning model over 
1000 epochs, showcasing four critical performance indi-
cators: accuracy, AUC-ROC, sensitivity, and loss. The 
top-left panel displays the accuracy curve, which rap-
idly increases and stabilizes above 90%, indicating effec-
tive learning and strong predictive power. The top-right 
panel shows the AUC-ROC trend, similarly converging 
near 0.95, suggesting the model’s excellent ability to dis-
tinguish between fracture and non-fracture cases. The 
bottom-left panel illustrates sensitivity, which steadily 

improves to exceed 90%, reflecting the model’s high true 
positive rate. The bottom-right panel demonstrates a 
sharply decreasing loss curve that plateaus at a low value, 
confirming effective model optimization with minimal 
overfitting. Collectively, these trends validate the robust-
ness and reliability of the proposed end-to-end frame-
work in learning discriminative features for wrist fracture 
diagnosis.

The integration of the stackbreaker feature, which 
enhanced information flow and model optimization, 
played a pivotal role in the performance of the end-to-
end model. This demonstrates the potential of end-to-
end frameworks for clinical diagnostics, providing an 
efficient and effective alternative to multi-stage pipelines 
while achieving comparable or superior results.

Figures 11 and 12 present the ROC curves correspond-
ing to the highest AUC values achieved during the study. 
The curves demonstrate the model’s ability to distin-
guish between fracture and non-fracture cases on both 

Fig. 7 Heatmap of Accuracy Across Feature Selection and Classification Methods
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the training and test datasets. The sharp rise and high 
AUC values indicate strong performance, with minimal 
trade-off between sensitivity and specificity. These figures 
provide a clear visualization of the model’s diagnostic 
efficacy under the optimal configuration.

Figure  13 displays the confusion matrices for the 
best-performing model, which utilized the MI feature 
selection method and the Voting Classifier. The matri-
ces illustrate the classification performance on both the 
training and test datasets. The training confusion matrix 
shows 1,324 TN, 1,393 TP, 9 FP, and 104 FN, indicating 
a strong performance in correctly classifying cases. Simi-
larly, the test confusion matrix demonstrates 328 TN, 344 
TP, 5 FP, and 30 FN, confirming the model’s robustness 
and generalizability. These matrices provide an intuitive 
understanding of the model’s diagnostic performance in 
distinguishing between fracture and non-fracture cases.

Figure  14 presents the t-SNE visualization of the fea-
ture space for the best-performing model, which utilized 

the MI feature selection method and the Voting Classi-
fier. The figure illustrates the high-dimensional feature 
data projected onto a two-dimensional plane, enabling a 
clear separation between fracture and non-fracture cases. 
The clustering observed in the t-SNE plot highlights the 
effectiveness of the selected features and the Voting Clas-
sifier in distinguishing between classes, supporting the 
model’s strong diagnostic performance. This visualization 
provides valuable insights into the feature space structure 
and its role in classification.

Figure 15 illustrates the attention map generated by the 
best-performing model, showcasing the specific regions 
of the input X-ray image that the model focused on most 
during its decision-making process. Brighter areas indi-
cate higher attention weights, suggesting regions the 
model identified as diagnostically significant—typically 
corresponding to fracture zones or structurally abnor-
mal regions. The spatial distribution of attention illus-
trates that the model has successfully localized clinically 

Fig. 8 Heatmap of Sensitivity Across Feature Selection and Classification Methods
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meaningful areas, reinforcing its interpretability and 
alignment with radiological assessment. Such attention-
based visualization enhances confidence in the model’s 
decision-making, bridging the gap between automated 
predictions and clinical reasoning.

Discussion
This study aimed to develop a hybrid diagnostic frame-
work that integrates radiomic and deep features for 
detecting and classifying forearm and wrist fractures in 
X-ray images. The methodology combined the interpreta-
bility of radiomics with the high-dimensional representa-
tion power of deep learning, leveraging feature selection 
techniques and ensemble classifiers to achieve robust 
diagnostic performance. The framework demonstrated 
significant improvements in diagnostic accuracy, sensitiv-
ity, and AUC-ROC values, with the combined approach 
consistently outperforming standalone radiomic or deep 
learning models. This discussion contextualizes our 

findings by comparing them with relevant studies in the 
field, highlighting methodological advancements, and 
addressing potential implications. In comparison to Yao 
et al. [20], who used radiomics-based logistic regression 
(LR) models for pediatric supracondylar humerus frac-
ture detection, our approach significantly enhances the 
diagnostic performance by integrating deep learning fea-
tures. While their study achieved AUC values of 0.65 and 
0.72 for anteroposterior and lateral radiographs respec-
tively, our hybrid model reached an AUC of up to 0.96 
on the test set. This improvement underscores the advan-
tage of combining radiomics with deep learning features, 
particularly when supported by advanced feature selec-
tion methods such as MI and RFE. Unlike the LR model 
in Yao’s study, which relied solely on selected radiomics 
features, our Voting Classifier effectively utilized both 
modalities, enhancing its robustness.

Deep learning-based studies such as those by Ali et al. 
[46] and Rafi et  al. [47] utilized YOLOv8/YOLOv9 and 

Fig. 9 Heatmap of AUC-ROC Across Feature Selection and Classification Methods
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ensembles of DenseNet, ResNet, and EfficientNet archi-
tectures, reporting high classification accuracy (~ 93%). 
While these methods achieved competitive results, they 
often relied solely on large-scale image representation 
learning and did not evaluate feature reproducibility. Our 
framework distinguishes itself by rigorously evaluating 
the stability of extracted features using ICC and cosine 
similarity, thereby ensuring greater reliability and gener-
alizability—factors often overlooked in prior deep mod-
els. In contrast to the wavelet and texture-based machine 
learning pipeline proposed by Kiran and Areeckal [50] 
for osteoporosis classification (accuracy: 78.24%), our 
approach uses a more scalable and generalizable feature 
fusion technique that is not limited to microstructural 
texture analysis but incorporates broader semantic and 
contextual features through deep learning. Furthermore, 
the use of ensemble models in our framework (specifi-
cally the Voting Classifier with MI feature selection) led 
to consistent improvements in diagnostic performance 
metrics such as sensitivity (94%) and AUC (96%), sur-
passing many reported values in both radiomics and deep 

learning studies. These results highlight the robustness of 
our integration strategy and its suitability for deployment 
across multi-institutional settings.

Similarly, Joshi et  al. [52] explored deep learning for 
wrist fracture detection and segmentation but relied 
heavily on manually annotated bounding boxes and 
segmentation masks, which are time-consuming and 
prone to inter-observer variability. Our study avoids 
such dependency by utilizing an attention mechanism 
in the autoencoder, enabling automated identifica-
tion of diagnostically relevant regions. Although their 
average precision (AP) reached 92.27% under specific 
conditions, our end-to-end model achieved compa-
rable accuracy (93%) and AUC-ROC (94%) without 
the need for labor-intensive annotations, demonstrat-
ing the practicality of our approach. In the context of 
hierarchical classification, Tanzi et  al. [53] proposed a 
multistage deep learning approach for proximal femur 
fractures, achieving an accuracy of 86% for three-class 
classification. Our study’s hybrid framework surpasses 
this performance, achieving accuracy up to 96% with 

Fig. 10 Performance Metrics and Loss Curve of the End-to-End Model Over 1000 Epochs
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Fig. 11 ROC Curve for the Highest AUC Value on the Training Dataset

Fig. 12 ROC Curve for the Highest AUC Value on the Test Dataset
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MI and Voting Classifier. This improvement is attrib-
uted to the integration of complementary radiomic 
and deep features, along with advanced dimensionality 

reduction techniques, which optimize the feature space 
and enhance model performance across different frac-
ture types.

Fig. 13 Confusion Matrices for the Best Performing Model (MI + Voting Classifier) on Training and Test Datasets

Fig. 14 t-SNE Visualization of Feature Space for the Best Performing Model (MI + Voting Classifier)
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While our comparison with Yao et  al. [20] and Tanzi 
et  al. [53] involves studies targeting different anatomi-
cal regions and populations (e.g., pediatric patients and 
proximal femur fractures, respectively), these references 
were selected to illustrate common methodological limi-
tations in radiomics- and deep learning-based fracture 
detection research. Our study differs in its focus on adult 
wrist X-rays and the binary classification of fracture vs. 
non-fracture cases. Despite these differences, the com-
parison serves to underscore the performance gains and 
increased interpretability achieved by integrating repro-
ducible radiomic and deep features. These distinctions 
also reinforce the need for anatomical- and population-
specific validation in AI-driven diagnostic models.

Hardalaç et  al. [54] explored ensemble deep learning 
models for wrist fracture detection, achieving an AP of 
86.39%. While their study utilized advanced object detec-
tion architectures, our approach emphasizes feature 
fusion and interpretability, yielding higher AUC values 
and better generalization to unseen data. Similarly, the 
ensemble model proposed by Tahir et  al. [55] achieved 
an accuracy of 92.96% for humerus fractures using pre-
trained deep learning models. In contrast, our study 
demonstrates the effectiveness of integrating domain-
specific radiomic features with learned deep representa-
tions, offering a tailored solution for forearm and wrist 
fractures. Our findings align with Guan et  al. [56], who 
demonstrated the superiority of combining attention 
mechanisms with deep learning for thighbone frac-
ture detection. Their model achieved an AP of 88.9%, 

comparable to our AUC-ROC of 0.96 in the combined 
approach. Additionally, Bae et al. [57] validated a CNN-
based femoral neck fracture detection model across mul-
tiple hospitals, achieving an AUC of 0.987. While their 
study highlighted the potential for external validation, 
our work focuses on integrating interpretable features, 
making it a more comprehensive diagnostic framework. 
In comparisons with studies such as Joshi et  al. [52], 
Hardalaç et al. [54], and Guan et al. [50], which primarily 
report average precision (AP), we acknowledge that AP 
is fundamentally distinct from accuracy or AUC-ROC. 
These metrics assess different dimensions of model per-
formance—AP being more relevant to object detection 
tasks, while AUC-ROC and accuracy pertain to clas-
sification sensitivity and discriminative capacity. Our 
references to AP in these comparisons are not intended 
as direct performance analogs but to highlight the dif-
ferences in methodological approach and application 
scope. Accordingly, we stress the importance of consist-
ent metric reporting within task domains and highlight 
our study’s strengths in interpretability, feature reproduc-
ibility, and generalization rather than direct numerical 
comparisons.

A relevant benchmark in wrist fracture classification is 
the work by Kim et  al. [58], who used transfer learning 
with the InceptionV3 architecture on a dataset of 1,389 
lateral wrist radiographs. Their model achieved an AUC 
of 0.954 in distinguishing fractures from non-fractures, 
demonstrating the efficacy of CNNs pre-trained on non-
medical datasets when fine-tuned for radiographic appli-
cations. In comparison, our hybrid framework achieved 
an AUC-ROC of 0.96 using a feature fusion approach that 
combines interpretable radiomic features with attention-
guided deep representations. Unlike Kim et al. [58], who 
relied solely on a single CNN architecture and limited 
explainability, our model incorporates SHAP-based inter-
pretation and reproducibility analysis (via ICC and cosine 
similarity), offering deeper insight into decision-making 
processes. Furthermore, our dataset encompasses 3,537 
cases across multiple institutions, supporting broader 
generalizability. These methodological enhancements 
position our framework as a more transparent and scal-
able solution for wrist fracture diagnosis.

Implications and Future Directions
The hybrid diagnostic framework introduced in this 
study effectively bridges the gap between standalone 
radiomics and deep learning approaches by combin-
ing their complementary strengths to enhance fracture 
detection in X-ray imaging. Radiomic features offer inter-
pretability and domain-specific insights based on estab-
lished clinical markers, while deep features—especially 

Fig. 15 Attention Map Visualization Highlighting Regions of Focus 
in Model Decision-Making
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those extracted via an attention-guided autoencoder—
capture abstract, high-dimensional patterns essential for 
nuanced fracture classification. This integrative design 
not only improves diagnostic accuracy and sensitivity but 
also addresses major limitations seen in prior work, such 
as limited feature reproducibility, model opacity, and 
poor generalizability.

By enforcing reproducibility thresholds (e.g., ICC 
≥ 0.75), incorporating advanced feature selection (e.g., 
MI, RFE), and adopting ensemble learning strategies, the 
framework ensures robustness, transparency, and clini-
cal applicability. Importantly, the use of explainable AI 
techniques, including SHAP value analysis and attention 
visualization, strengthens model interpretability, fos-
tering trust in clinical decision support environments. 
Looking ahead, future research should focus on vali-
dating the proposed framework across external, multi-
center datasets that encompass diverse imaging protocols 
and patient demographics. Additionally, integration into 
real-time clinical workflows—such as automated triage in 
emergency departments or decision support for radiolo-
gists—could significantly enhance diagnostic efficiency 
and patient outcomes. The modular design of the frame-
work also lends itself well to adaptation across other 
anatomical sites (e.g., hip, spine, shoulder) and imaging 
modalities (e.g., CT, MRI), offering a scalable foundation 
for broader musculoskeletal diagnostic applications.

Conclusion
This study presents a robust hybrid diagnostic framework 
that combines radiomic and deep features for the detec-
tion and classification of forearm and wrist fractures 
using X-ray images. By leveraging advanced feature selec-
tion techniques and ensemble classifiers, the proposed 
framework achieves superior diagnostic accuracy, sensi-
tivity, and AUC-ROC compared to standalone methods. 
The integration of interpretable radiomics with high-
dimensional deep learning features ensures both reli-
ability and clinical relevance, addressing the limitations 
of traditional and AI-only approaches. The framework’s 
adaptability and strong performance highlight its poten-
tial for deployment in real-world clinical settings, par-
ticularly in areas with limited radiology expertise. Future 
work could extend this approach to other anatomical 
regions and imaging modalities, further demonstrating 
its versatility and impact in automated fracture diagnosis.
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